The Analysis of Variance Ronald Fisher

- Developed by R. A. Fisher in the 1920's
- Fisher was a mathematician then employed by Rothamsted to analyze data from field experiments
- Developed ANOVA as a way to separate treatment and plot effects

- Published a series of reports under the title Studies in Crop Variation
- Published the book *Statistical Methods for Research Workers* in 1925
- First citation of his book in an *Agronomy Journal* article was in 1926 by "Student"

One-factor ANOVA Example

Corn Yield Trial

- 12 Hybrids
- 4 Reps

One-factor ANOVA

Conceptual Layout

Hybrid i

	1	2	3	4	5	6	7	8	9	10	11	12
Plot (i)j	1	5	9	13	17	21	25	29	33	37	41	45
(i)i	2	6	10	14	18	22	26	30	34	38	42	46
נליו	3	7	11	15	19	23	27	31	35	39	43	47
	4	8	12	16	20	24	28	32	36	40	44	48

- Shows relationships among factors in an experiment
- In this one there are 12 treatments (Hybrids)
- Each one is grown (replicated) in four independent plots
- Note that there are a total (4x12) of 48 plots
- Plots are considered to be nested because each one is an individual and can only be assigned to one of the Hybrids

Variance of a Population

$$\sigma^2 = \frac{\sum_{i=1}^n (Y_i - \mu)^2}{n}$$

Variance of a Sample Population

$$s^2 = \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{n-1}$$

The Normal Distribution

$$f = \frac{N}{\sigma\sqrt{2\pi}}e^{-(X-\mu)^2/2\sigma^2}$$

Variance of a Mean

$$s_{\overline{y}}^2 = \frac{s^2}{r}$$
$$s^2 = rs_{\overline{y}}^2$$

$$s^2 = rs_{\overline{v}}^2$$

Switchgrass Variety Trial (Yield, Mg/ha)

	Cultivar			
Replication	Α	В		
1	10.8	8.9		
2	12.7	8.9		
3	11.4	8.6		
4	13.6	8.8		
5	13.9	8.5		
6	13.0	6.1		
Mean	12.6	8.3		
Variance	1.46	1.24		

Switchgrass Variety Trial (Yield, Mg/ha)

Between Treatment Variance

$$s_{\bar{y}}^2 = \frac{\sum_{i=1}^{n} (\overline{Y}_i - \overline{Y})^2}{n-1} = \frac{(12.6 - 10.4)^2 + (8.3 - 10.4)^2}{2 - 1} = 9.12$$

$$s^2 = rs_{\bar{y}}^2 = 6(9.12) = 54.74$$

Switchgrass Variety Trial (Yield, Mg/ha)

Within Treatment Variance

$$s_{p}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{(n_{1} + n_{2}) - 2} = \frac{5(1.46) + 5(1.24)}{(6+6) - 2} = 1.35$$

$$s_{p}^{2} = \frac{s_{1}^{2} + s_{2}^{2}}{2} = \frac{1.46 + 1.24}{2} = 1.35$$

Switchgrass Variety Trial (Yield, Mg/ha)

$$F = \frac{s_b^2}{s_w^2} = \frac{54.74}{1.35} = 40.58$$

The probability that $F_{1,10 df} > 40.58$ is 0.000081

Excel Formula: =FDIST(40.58,1,10) =0.000081

Linear Additive Model

$$Y_{ij} = \mu + T_i + \epsilon_{(i)j}$$

where:

Y_{ij} = Response observed for the ij experimental unit

 μ = Overall mean

T_i = Effect of the ith treatment

 $\epsilon_{\text{(i)j}} = \text{Effect associated with the ij}^{\text{th}} \\ \text{eu or plot}$

ANOVA

Assumptions

$$Y_{ij} = \mu + T_i + \varepsilon_{(i)j}$$

1) Effects are additive

Errors are:

- 2) Normally distributed
- 3) Homogenous
- 4) Independent

One-Factor ANOVA Corn Yield Test Example

$$Y_{ij} = \mu + T_i + \epsilon_{(i)j}$$

$$\begin{bmatrix} \text{Corn yield} \\ \text{in plot 101} \end{bmatrix} = \begin{bmatrix} \text{Average of} \\ \text{all plots} \end{bmatrix} + \begin{bmatrix} \text{Effect of} \\ \text{hybrid 6} \end{bmatrix} + \begin{bmatrix} \text{Effect of} \\ \text{plot 101} \end{bmatrix}$$

$$163.04 \qquad 154.39 \qquad 3.08 \qquad 5.57$$

Means Model

$$Y_{ij} = \mu_{Ti} + \epsilon_{(i)j}$$
163.04 157.47 5.57

Deviations Model

$$Y_{ij} - \mu = T_i + \epsilon_{(i)j}$$

8.65 3.08 5.57

One-Factor ANOVA Expected Mean Squares

Term	EMS
T _i	σ_{e}^{2} + j ϕ T
ε _{(i)j}	σ_{e}^{2}

Row / Column Notation

		Replicat	ion (j)			
Treatment (i)	1	2	3	r	Total	Mean
1	Y ₁₁	Y ₁₂	Y ₁₃	Y_{1r}	T _{1.}	$\overline{Y}_{1.}$
2	Y ₂₁	Y ₂₂	Y ₂₃	Y_{2r}	T _{2.}	<u>Y</u> _{2.}
3	Y ₃₁	Y ₃₂	Y ₃₃	Y_{3r}	T _{3.}	$\overline{Y}_{3.}$
t	Y_{t1}	Y_{t2}	Y_{t3}	Y_{tr}	T _{t.}	$\overline{Y}_{t.}$
					T	<u>7</u>

One-Factor ANOVA Calculations

Source	df	SS	MS	F
T _i	I - 1	$J\sum_{i=1}^{I}(\overline{Y}_{i.}-\overline{Y}_{})^{2}$	SS(T)/(I - 1)	MS(T)/MS(E)
ε _{(i)j}	I(J - 1)	$\sum_{i=1}^{I} \sum_{j=1}^{J} (\mathbf{Y}_{ij} - \overline{\mathbf{Y}}_{i.})^2$	SS(E)/[I(J - 1)]	
Total	IJ - 1	$\sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{ij} - \overline{Y}_{})^{2}$		

One-Factor ANOVA Switchgrass Example

Treatments

- Variety 10
- Reps 6

$$SS_{TOT} = \sum_{i=1}^{10} \sum_{j=1}^{6} (Y_{ij} - \overline{Y}_{..})^2 = 788.10$$

$$SS_{TRT} 6 \sum_{i=1}^{10} (\overline{Y}_{i.} - \overline{Y}_{..})^2 = 6(59.25) = 355.53$$

$$SS_{ERROR} = SS_{TOT} - SS_{TRT} = 788.10 - 333.53 = 432.57$$

One-Factor ANOVA Switchgrass Example

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Cultivar	9	355.5271	39.50301	4.57	0.0002
Error	50	432.5709	8.651419		
Total	59	788.098			

The probability of the F ratio (4.57) occurring by chance is quite low − only 2 out of 10,000. ∴ we conclude that there was a significant cultivar effect.

One-Factor ANOVA Hypothesis

F-test in ANOVA tests the null hypothesis:

$$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$$

Based on the ANOVA we conclude that the null hypothesis is false. That is, at least one pair of means among the ten are statistically different from each other.

One-Factor ANOVA Switchgrass Example

Cultivar	Mean Yield (Mg/ha)
Α	12.6
В	8.3
С	14.2
D	12.7
E	9.4
F	6.7
G	13.9
Н	9.6
I	9.4
J	9.1

We know that there is at least one significant difference among pairs of means. How do we find out which pairs actually differ?